Loading Events

« All Events

  • This event has passed.

EDS DL Event: Artificial Intelligence and Brain Biofields Quantum Computing (Online)

May 19, 2023 @ 12:00 pm - 1:00 pm PDT

The Electron Devices Society Santa Clara Valley/San Francisco joint Chapter is hosting an EDS Distinguished Lecturer Dr. Adam Skorek. The titled of the lecture is ‘Artificial Intelligence and Brain Biofields Quantum Computing.
When: Friday, May 19, 2023 – 12 Noon to 1 pm (PDT)
Where: This is an online event and attendees can participate via Zoom.
Registration Link: (https://bit.ly/3KY0mUa)
Contact: hiuyung.wong at ieee.org
Speaker: Prof. Adam Skorek (EDS Distinguished Lecturer)
Abstract:
Artificial intelligence (AI) is present in electrical, electronics, and computer engineering for years. In particular, the biofields defined as electromagnetics and thermal fields in living matter are naturally related to AI studies and applications, including brain analysis with numerical modeling and simulations. Brain functionalities inspire all developments in AI from theoretical investigations to machine learning, humanoids robots, Digital Twins (DT), and brains interface devices implementation. The brain biofields’ interactions with external excitations such as 5G/6G telecommunications devices, transcranial magnetic stimulation, and even other brains biofields are currently explored more than ever before. The computation demand in modeling and simulation is still growing and it is particularly high in both AI and brain biofields applications. Hopefully, the High-Performance Computing (HPC) and High-Performance Quantum Computing (HPQC) infrastructures become more easily accessible and offer researchers some new opportunities based on the open and shared resources including not only computing facilities with quantum units but also knowledge with currently observed openings in the field of intellectual property issues. A presentation from a worldwide perspective of some modern research works with their results applications is completed by the lecturer’s experiences and guidelines for the future. Some practical examples and instructions for researchers, engineers, and students are presented, stimulating the audience to various scientific as well R&D activities in those so promising areas.
Speaker Bio:
Prof. Adam Waldemar Skorek (M’87, SM’90, F’09, LF’23) completed Bachelor and Master of Electrical Engineering Program at Białystok University of Technology (Poland) receiving both Master and Engineer degrees in 1980. Participant of the Electrical Engineering Faculty Doctoral Studies, he received a Doctor of Technical Sciences degree in Electrical Engineering at Warsaw University of Technology (Poland) in 1983. From 1983 to 1987 he was a Visiting Lecturer at the Institute of Telecommunications in Oran (Algeria). In 1987, he joined the University of Quebec at Trois-Rivières (UQTR), Canada, where currently, he is a Full Professor and Director of the UQTR’s Electro-Thermal Management Laboratory which succeeded both the Nano-Heat Laboratory and Industrial Electro-Heat Laboratory, all founded and directed by himself since 1989. He is conducting electrical engineering courses for bachelor, master, and Ph.D. students. His research works were granted by NSERC, CFI, FRQNT, MITACS, and Industry. He was made contributions to the numerical analysis of electro-thermal and biofields phenomena exploring and applying various techniques to electrical apparatus, electronic devices, and living organisms. His publications and communications record include works on High-Performance Computing, Artificial Intelligence, Digital Twins (DT) and Quantum Computing applications, in electro-thermal and biofields analysis. A number of those publications are available in IEEE Xplore. The IEEE Life Fellow, as well as Fellow of the Engineering Institute of Canada, Prof. Adam W. Skorek is a Member of the Engineering Academy in Poland and recipient of the 2021 IEEE Industry Applications Society Distinguished Service Award.
Speaker(s): Prof. Adam Skorek
Agenda:
The Electron Devices Society Santa Clara Valley/San Francisco joint Chapter is hosting an EDS Distinguished Lecturer Dr. Adam Skorek. The titled of the lecture is ‘Artificial Intelligence and Brain Biofields Quantum Computing.
When: Friday, May 19, 2023 – 12 Noon to 1 pm (PDT)
Where: This is an online event and attendees can participate via Zoom.
Registration Link: (https://bit.ly/3KY0mUa)
Contact: hiuyung.wong at ieee.org
Speaker: Prof. Adam Skorek (EDS Distinguished Lecturer)
Abstract:
Artificial intelligence (AI) is present in electrical, electronics, and computer engineering for years. In particular, the biofields defined as electromagnetics and thermal fields in living matter are naturally related to AI studies and applications, including brain analysis with numerical modeling and simulations. Brain functionalities inspire all developments in AI from theoretical investigations to machine learning, humanoids robots, Digital Twins (DT), and brains interface devices implementation. The brain biofields’ interactions with external excitations such as 5G/6G telecommunications devices, transcranial magnetic stimulation, and even other brains biofields are currently explored more than ever before. The computation demand in modeling and simulation is still growing and it is particularly high in both AI and brain biofields applications. Hopefully, the High-Performance Computing (HPC) and High-Performance Quantum Computing (HPQC) infrastructures become more easily accessible and offer researchers some new opportunities based on the open and shared resources including not only computing facilities with quantum units but also knowledge with currently observed openings in the field of intellectual property issues. A presentation from a worldwide perspective of some modern research works with their results applications is completed by the lecturer’s experiences and guidelines for the future. Some practical examples and instructions for researchers, engineers, and students are presented, stimulating the audience to various scientific as well R&D activities in those so promising areas.
Speaker Bio:
Prof. Adam Waldemar Skorek (M’87, SM’90, F’09, LF’23) completed Bachelor and Master of Electrical Engineering Program at Białystok University of Technology (Poland) receiving both Master and Engineer degrees in 1980. Participant of the Electrical Engineering Faculty Doctoral Studies, he received a Doctor of Technical Sciences degree in Electrical Engineering at Warsaw University of Technology (Poland) in 1983. From 1983 to 1987 he was a Visiting Lecturer at the Institute of Telecommunications in Oran (Algeria). In 1987, he joined the University of Quebec at Trois-Rivières (UQTR), Canada, where currently, he is a Full Professor and Director of the UQTR’s Electro-Thermal Management Laboratory which succeeded both the Nano-Heat Laboratory and Industrial Electro-Heat Laboratory, all founded and directed by himself since 1989. He is conducting electrical engineering courses for bachelor, master, and Ph.D. students. His research works were granted by NSERC, CFI, FRQNT, MITACS, and Industry. He was made contributions to the numerical analysis of electro-thermal and biofields phenomena exploring and applying various techniques to electrical apparatus, electronic devices, and living organisms. His publications and communications record include works on High-Performance Computing, Artificial Intelligence, Digital Twins (DT) and Quantum Computing applications, in electro-thermal and biofields analysis. A number of those publications are available in IEEE Xplore. The IEEE Life Fellow, as well as Fellow of the Engineering Institute of Canada, Prof. Adam W. Skorek is a Member of the Engineering Academy in Poland and recipient of the 2021 IEEE Industry Applications Society Distinguished Service Award.
Virtual: https://events.vtools.ieee.org/m/359050

Details

Date:
May 19, 2023
Time:
12:00 pm - 1:00 pm PDT
Event Category:
Website:
https://events.vtools.ieee.org/m/359050

Details

Date:
May 19, 2023
Time:
12:00 pm - 1:00 pm PDT
Event Category:
Website:
https://events.vtools.ieee.org/m/359050
© Copyright - Silicon Valley Engineering Council